skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schnitzer, Ory"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The squirmer is a popular model to analyse the fluid mechanics of a self-propelled object, such as a micro-organism. We demonstrate that some fore–aft symmetric squirmers can spontaneously self-propel above a critical Reynolds number. Specifically, we numerically study the effects of inertia on spherical squirmers characterised by an axially and fore–aft symmetric ‘quadrupolar’ distribution of surface-slip velocity; under creeping-flow conditions, such squirmers generate a pure stresslet flow, the stresslet sign classifying the squirmer as either a ‘pusher’ or ‘puller’. Assuming axial symmetry, and over the examined range of the Reynolds number$$Re$$(defined based upon the magnitude of the quadrupolar squirming), we find that spontaneous symmetry breaking occurs in the puller case above$$Re \approx 14.3$$, with steady swimming emerging from that threshold consistently with a supercritical pitchfork bifurcation and with the swimming speed growing monotonically with$$Re$$. 
    more » « less